
www.manaraa.com

Scheduling with Implicit Information in Distributed Systems

Andrea C. Arpaci-Dusseau, David E. Culler, Alan M. Mainwaring

Computer Science Division
University of California, Berkeleyfdusseau, culler, alanmg@cs.berkeley.eduAbstract

Implicit coscheduling is a distributed algorithm for time-sharing
communicating processes in a cluster of workstations. By ob-
serving and reacting to implicit information, local schedulers
in the system make independent decisions that dynamically
coordinate the scheduling of communicating processes. The
principal mechanism involved is two-phase spin-blocking: a
process waiting for a message response spins for some amount
of time, and then relinquishes the processor if the response
does not arrive.

In this paper, we describe our experience implementing
implicit coscheduling on a cluster of 16 UltraSPARC I work-
stations; this has led to contributions in three main areas. First,
we more rigorously analyze the two-phase spin-block algo-
rithm and show that spin time should be increased when a pro-
cess is receiving messages. Second, we present performance
measurements for a wide range of synthetic benchmarks and
for seven Split-C parallel applications. Finally, we show how
implicit coscheduling behaves under different job layouts and
scaling, and discuss preliminary results for achieving fairness.1 Introduction
Scheduling parallel applications in a distributed environment,
such as a cluster of workstations [2], remains an important and
unsolved problem. For general-purpose and developmental
workloads, time-sharing approachesare attractive becausethey
provide good response time without migration or execution-
time predictions. However, time-sharing has the drawback
that communicating processes must be scheduled simultane-
ously for good performance. Over the years, researchers have
developed time-sharing approaches more suitable for general-
purpose workloads in a cluster of workstations.

Local scheduling, where each workstation independently
schedules its processes, is an attractive time-sharing option for
its ease of construction, scalability, fault-tolerance, workload
adaptivity, and autonomy [8, 15, 19, 30]. However, with local
scheduling, the performance of fine-grain communicating jobs

To appear in the
SIGMETRICS’98/PERFORMANCE’98 Joint Conference
on the Measurement and Modeling of Computer Systems,
June 1998, Madison, Wisconsin.

is orders of magnitude worse than with explicit coscheduling
because the scheduling is not coordinated across workstations.

Explicit coscheduling [24] ensures that the scheduling of
communicating jobs is coordinated by constructing a static
global list of the order in which jobs should be scheduled;
a simultaneous global context-switch is then required across
processors. Unfortunately, straight-forward implementations
are neither scalable nor reliable; hierarchical constructions can
remove single points-of-failure and scalability bottlenecks, but
only with increased implementation complexity [14]. Ex-
plicit coscheduling also requires that the schedule of com-
municating processes be precomputed, which complicates the
coscheduling of client-server applications and requires pes-
simistic assumptionsaboutwhich processescommunicate with
one another. Simulations have shown that communicating
processes can be identified at run-time, but local schedulers
still must agree on a common schedule and context-switch
time [16]. Finally, explicit coscheduling of parallel programs
interacts poorly with interactive jobs and with jobs performing
I/O [3, 5, 13, 22].

Alternatively, with dynamic or implicit coscheduling, in-
dependent schedulers on each workstation coordinate paral-
lel jobs through local events that occur naturally within the
communicating applications [11, 25]. The work stemming
from Sobalvarro et al’s initial simulations achieves dynamic
coscheduling by scheduling processes on message arrival [7,
27, 26]. The simulations in [11] have instead used two-
phase spin-blocking as the primary mechanism for implicit
coscheduling. In this paper, we continue to use two-phase
spin-blocking to achieve coordination, extending the previous
results in several ways.

First, the previous work has consistedof either only simula-
tions on synthetic workloads [11, 27] or implementations sup-
porting one parallel job in competition with multiple sequential
jobs [7, 26]. In this paper, we describe the first implementation
of implicit coscheduling that is effective for multiple parallel
programs with different communication characteristics. Our
measurements on a cluster of 16 UltraSPARC 1 workstations
connected with a high-speed network show that most applica-
tions are implicitly coscheduled with performance similar to
an ideal model of explicit coscheduling. We examine a more
extensive range of synthetic benchmarks than previous work,
as well as seven Split-C parallel applications. We also show
that implicit coscheduling is robust to the layout of jobs across
processors and to changes in the local priority-based scheduler.

Experiencewith our implementation and applications other
than the bulk-synchronous benchmarks analyzed in our previ-

1

www.manaraa.com

Information Type Local Observation: Remote Implication Local Action Mechanism
Response Inherent Fast: Remote scheduled Stay scheduled Two-phase spin-block

Time Slow: Remote not scheduled Relinquish processor Two-phase spin-block
Message Inherent Request: Sender scheduled Increase Spin-Time Two-phase spin-block
Arrival Response: Receiver scheduled Wake original sender Two-phase spin-block

Scheduling Derived Starving locally: Starving globally Schedule job more Raise priority
Progress Acceptable locally Acceptable globally (No action) (None)

Figure 1: Implicit Information. The table summarizes the information that is locally available to each scheduler, the remote
implication of each event, the local action that leads to effective implicit coscheduling, and the mechanism we use to achieve this
behavior.

ous simulations has helped us to refine the calculations for
spin time. We show that the spin time before a process relin-
quishes the processor at each communication event consists of
three components. First, a process should spin for the base-
line time for the communication operation to complete; this
component keeps coordinated jobs in synchrony. Second, the
process should increase the spin time according to a local cost-
benefitanalysis of spinning versus blocking. Third, the process
should spin longer when receiving messages from other pro-
cesses, thus considering the impact of this process on others in
the parallel job.

The rest of this paper is organized as follows. We begin in
Section 2 by discussing the goals and philosophy of using im-
plicit information for coscheduling. In Section 3 we show how
to empirically derive spin-time as a function of several system
parameters. In Section 4 we describe our initial implemen-
tation. We present measurements on both synthetic and real
applications in Section 5. In Section 6, we vary the number of
jobs, the layout of jobs across processors, and the communica-
tion characteristics of the jobs in competition with one another.
Finally, we conclude and describe future work in Section 7.2 Implicit Coscheduling2.1 Implicit Services
Building high-performance, highly-available services for any
system with general-purpose workloads is a challenging task.
Implementing these services in a distributed environment in-
troduces even more challenges. For example, not only must
the single-node performance be acceptable, but performance
must scale as the system grows. The system must be robust to
node failures, as well as allow new nodes to be added. Finally,
the mechanisms for the global environment must not interfere
with the functionality of the previously well-tuned local sys-
tem. These three goals of scalability, reliability, and autonomy,
are more difficult to obtain due to communication between the
participating components.

The simplest distributed service to construct contains no
additional communication between components in the system;
instead, each local service makes intelligent, independent de-
cisions. We define an implicit system as a system where co-
operating clients infer remote state from local events, and thus
make decisions that lead to a global goal. An implicit service
performs no additional communication beyond that inherent
within the applications it supports. Note that this classifica-
tion is much stricter than defining a system as dynamic, where
a system may adapt to underlying behavior, but may require
additional communication between components in the system.

We classify implicit information into two categories: in-
herent and derived. Inherent information is propagated across
nodes regardless of the behavior of the local components. De-
rived information requires knowledge of how the local compo-
nents react to the inherent events.2.2 Local Information: Events and Implications
In this section, we present the implicit information available
for implicit coscheduling. We describe two inherent events,
response time and message arrival, as well as a third derived
event, scheduling progress. For each event, we describe the
implied remote scheduling state, the desired local action, and
an efficient mechanism for implementing this action. The three
pieces of implicit information are summarized in Figure 1.

The first inherent piece of information, response time, is
the time for the response to a message request to return to the
sending process. Assuming the destination process must be
scheduled for a response to be returned, a fast response indi-
cates to the sending node that the corresponding destination
process is probably currently scheduled. Therefore, the de-
sired action for dynamic coscheduling is to keep the sender
scheduled. Conversely, if the response is not received in a
timely fashion, the sending node can infer that the destination
is probably not scheduled; thus, it is not beneficial to keep the
sender scheduled.

The mechanism that achieves these desired actions is two-
phase spin-blocking. With two-phase spin-blocking, a process
spins for some amount of time, and if the response arrives be-
fore the time expires, it continues executing. If the response is
not received within the threshold, the process voluntarily relin-
quishes the processorso a competing process can be scheduled.
In this paper, we determine the appropriate spin time as a func-
tion of system and communication parameters.

The second inherent event, message arrival, is the receipt
of a message from a remote node. When a message arrives,
the implication is that the corresponding remote process was
recently scheduled. Therefore, it may be beneficial to schedule,
or keep scheduled, the receiving process.

Our implementation of implicit coscheduling uses incom-
ing messages to either wake-up processes that are sleeping
while waiting for a message response, or to increase the spin-
wait time of currently scheduled processes. Therefore, we re-
quire no additional mechanism beyond two-phase spin-block
to react to arriving messages; this is in contrast with Sobal-
varro et al.’s implementation [25], where a message arrival
may increase the priority of the intended process and requires
new interactions with the local scheduler.

The third event, scheduling progress, is the rate at which
a local process makes forward progress and is derived from

2

www.manaraa.com

knowledge of component behavior. While the previous two
events were required for implicit coscheduling to converge
efficiently, this third event is used to ensure that competing
processes are scheduled fairly.

Given that processes relinquish the processor when wait-
ing for message responses, each of the local schedulers can
determine if a job is making forward progress by observing
how much it has been scheduled recently. If the job performs
fine-grain communication, the local scheduler can infer that
the corresponding processes on other nodes have also made
progress, since the forward progress of each process depends
on others being scheduled. If the job performs little commu-
nication, no such inference can be made, but, in that case,
coordinated scheduling across nodes is not required. For fair
scheduling, each local scheduler should bias future decisions
towards jobs which have received less CPU time.3 Determining Spin-Time
The most crucial component of implicit coscheduling is that
processes perform a two-phase spin-block when waiting for
any result from a remote process. The goal of two-phase spin-
blocking is to keep coordinated processes coscheduled, and to
let uncoordinated processes relinquish the processor.

In this section, we begin by describing our model of parallel
applications and then derive the appropriate spin-time in three
steps. First, processes should spin the baseline amount which
keeps processes coscheduled when they are already so; this
requires that processes spin for the time of a communication
operation when all involved processes are scheduled. The sec-
ond and third steps adjust the baseline spin time by comparing
the cost to the benefit of spinning longer. The second compo-
nent accounts for the cost and benefit from the perspective of
the local process, while the third component examines pairs of
communicating processes.3.1 Background: Process Model
In the terminology in this paper, a job refers to a set of com-
municating processes. This job may be a dynamic, changing
collection of processes, such a server with multiple clients, or
a more traditional static, predefined collection, as in a paral-
lel application. A process is the unit scheduled by each local
operating system scheduler.

We consider two basic communication operations: reads,
request-response messages between pairs of processes, and
barriers, messages synchronizing all processes. In our model,
the important parameters for characterizing an application are
the time betweenreads, the time between barriers, and the load-
imbalance across processes (or the difference in time between
the arrival of the first and the last process at a barrier).3.2 Baseline Spin: Keeping Processes Coordinated
The baseline componentof spin-time, SBase, ensures that pro-
cesses stay coordinated if already in such a state. Thus, all
processes must spin at least the amount of time for the commu-
nication operation to complete when all involved processes are
scheduled. We now evaluate the expected completion time for
reads and barriers in our current implementation and describe
how these values match our previous simulations [11].

In general, a request-response message pair is expected to
complete in the round-trip time of the network, plus potentially
the time, W , to wake the destination process when the request

arrives. Using the LogP model [10], where L is the latency
of the network and o is the processing overhead of sending
and receiving messages, round-trip time is simply 2L + 4o.
Therefore, the read baseline time is SRBase = 2L + 4o +W , a value easily determined with simple microbenchmarks.
In our implementation, SRBase = 120 �s.1 Our previous
simulations did not model communication overhead, o, and
therefore used a baseline spin time of SRBase = 2L+W , and
assumedW was identical to the context-switch cost.

In a parallel application running in a dedicated environ-
ment, the time for a barrier operation to complete is the sum
of the minimum time for a barrier plus the load-imbalance, v,
across the processes. In our system, the minimum time for a
barrier across 16 processes was measured with a microbench-
mark as SBBase = 378 �s.2 In our simulations, the minimum
time for the barrier was identical to a read: SBBase = 2L+W .
In both environments, the process must spin SBBase+v for the
barrier to complete. In the next section, we analyze whether or
not it is cost-effective to spin for this entire amount.3.3 Local Cost-Bene�t: Single Process
Spinning for the baseline amount keeps processes coordinated
when they are already coscheduled. Additionally, we may need
to modify spin time according to a local cost-benefit analysis.
For example, if the destination process will be scheduled soon
in the future, it may be beneficial to spin longer and avoid
the cost of losing coordination and being rescheduled later.
On the other hand, when a large load-imbalance exists across
processes in the parallel job, it may be wasteful to spin for the
entire load-imbalance even when all the processesare cosched-
uled. In this section, we analyze these two factors from the
perspective of a single spinning process to determine the local
spin component, SLocal .

We begin by considering the additional time a process
should spin when waiting for a communication operation with
no load-imbalance to complete. To do so, we must know the
cost of blocking for the current local process. For both reads
and barriers, the local process pays an additional penalty to be
rescheduled in the future when the desired response arrives: the
time to wake-up and schedule a process on a message-arrival,W .

It is well understood that given a penalty, such asW , and a
fixed distribution of waiting times, then spinning for a time W
is competitive with a ratio of two; that is, the performance of
this on-line algorithm is at worst twice that of the optimal off-
line algorithm [21]. The problem with directly applying this
analysis to spin-time in implicit coscheduling is that the waiting
times for each process in the system may change drastically
depending upon the spin-time chosen by any other process.
This feedback between spin-time and the resulting distribution
of wait times is not as significant of a factor in other environ-
ments where competitive spin-times have been analyzed, such
as acquiring locks in a shared-memory environment [20].

We have empirically determined that spinning for an addi-
tional time equal to the penalty W works well for both reads
and barriers in the simulations and the current implementation,

1We found that a large variation in round-trip and wakeup times exists in
practice; therefore, the knee-of-the curve should be used rather than the mean.
In our implementation, the knee usually occurred at the time at which 95-97%
of the operations had completed.

2Our barrier is currently implemented with all processes sending directly to
process 0. In this way, in contrast to a tree implementation, the scheduling of
nodes higher in the tree does not adversely affect nodes closer to the leaves. We
have not yet evaluated the impact of a tree-barrier.

3

www.manaraa.com

Variable Description Value (�s)W message wakeup cost 65
2o+ 4L round-trip time 55SRBase baseline read spin 2o+ 4L+W

= 120SRLocal local read spin SRBase +W
= 185B barrier latency 378SBBase baseline barrier spin B
= 378SBLocal local barrier spin SBBase +W
= 438VLocal block imbalance 4W + 2B

= 1000TPair pairwise message 5W
interarrival = 325SPair conditional pairwise spin TPair

= 325

Figure 2: Components of Spin-Time. The table shows, for
our implementation, the time a process should spin at reads
and barriers before blocking.

provided that the base spin time is always used. Spinning for
the SBase softens the impact of the spin time chosen by one
process on the wait times of other processes in the system.

This analysis corroborates the simulation results that spin-
ning SLocal = SBase +W � 2W offers the best fixed spin-
time performance.3 In our implementation, all read operations
spin for at least SRLocal = SRBase +W and all barriers spin
for at leastSBLocal = SBBase+W . Likewise,when a process
is wokenon a messagearrival that does not complete its current
two-phase spin-block, the process spins for an additional W
before blocking again.

The second question is how long a single process should
spin-wait when load-imbalance exists across processes. With
high load-imbalance spinning for the entire completion time
of barriers keeps applications coordinated, but has two dis-
advantages. First, as load-imbalance increases, so does the
time processes must spin wastefully before concluding that
the scheduling is uncoordinated. Second, at some point of
load-imbalance, the penalty for spinning while waiting for the
barrier to complete is higher than the penalty for losing coor-
dination.

The term VLocal is the load-imbalance at which it is better
to spin the minimum amount, SBLocal , and then block, rather
than spin for the entire load-imbalance. Thus, VLocal is the
point at which the expected benefit of relinquishing the pro-
cessor exceeds the cost of being scheduled again. Analyzing
the impact on an individual process, each of which can expect
to wait V

2 at the barrier, shows:

Blocking Benefit > Blocking CostV
2 � SBLocal > WV

2 � (B +W) > W=) VLocal > 4W + 2B
3The simulations made the approximation 2L + 2W � 2W , because

the context switch time was large (W = 200�s) relative to network latency
(L = 10�s).

3.4 Pairwise Cost-Bene�t: Incoming Messages
Performing cost-benefit analysis not only for a single process,
but also between pairs of communicating processes, improves
the performance of implicit coscheduling. Intuitively, a process
handling requests is benefiting the job as a whole and should
spin longer than one that is not receiving messages. While the
previous two componentsof spin time were constants, pairwise
spin-time, SPair only occurs when other processesare sending
to the currently spinning process, and is therefore conditional.

The following analysis considers a pair of processes: the
receiverwho is performing a two-phase spin-block while wait-
ing for a communication operation to complete, and a sender
who is sending a request to the receiver. We can determine the
interval TPair in which the receiver must receive a message
for spinning to be beneficial, by comparing the costs for the
sender and the receiver when the receiver spins to the costs
when the receiver sleeps.

We begin with the case where the receiver is spinning when
the request arrives. The sender waits only time 2L+4o for the
response to be returned, while the receiver spins idly for timeTPair to handle this one message. The total cost to the sender
and receiver when the receiver spins is thus 2L+ 4o+ TPair .

In the second case, the receiver blocks before the request
arrives. The sender unsuccessfully spins for time SRLocal =
2L + 4o + 2W and then blocks; later, when the receiver is
rescheduled and replies to this request, the sender is woken at
a cost ofW before continuing. Meanwhile, the receiver pays a
cost of W when it is woken to handle the message and anotherW spinning. The total cost to the processes is 2L+ 4o+ 5W .

Assuming that messagearrivals are evenly spaced in time, a
receiver should block rather than spin when the interval, TPair ,
between message arrivals is as follows:

Spinning Cost > Blocking Cost
2L+ 4o+ T > (2L+ 4o+ 5W)=) TPair > 5W

This analysis assumes that a receiver can predict whether a
message will arrive in an interval TPair in order to determine
if it should spin or block. In practice, future arrival rates can
be predicted from behavior in the recent past, suggesting the
following implementation.

When waiting for a remote operation, the process spins for
the base and local amount, SLocal, while recording the num-
ber of incoming messages. If the average interval between
requests is sufficiently small (i.e., less than TPair = 5W), the
process assumes that it will remain beneficial in the future to
be scheduled and continues to spins for an additional time ofSPair = 5W . The process continues conditionally spinning
for intervals of 5W until no messages are received in an inter-
val. Since incoming communication is expected to decline as
processes reach the barrier, communication from only the most
recent interval should be considered, and not averaged over a
longer period. The next time this process performs a two-phase
spin-block, the process begins anew by spinning only SLocal
and reevaluating the benefits of spinning longer.

The simulations [11] did not find pairwise spinning neces-
sary due to the simplicity of the bulk-synchronousbenchmarks
examined. Since no communication was performed in the
phases that varied granularity or load-imbalance, few messages
arrived as processes waited at barriers. As we verify in Sec-
tion 5, spinning for the pairwise amount in bulk-synchronous
applications does not improve performance beyond local spin-
ning.

4

www.manaraa.com

3.5 Summary
In this section, we have described three components to deter-
mining spin-time within the two-phase spin-block algorithm
used in implicit coscheduling. The first component, spinning
for the baseline amount, ensures that processes stay coordi-
nated. The second component, an additional spin-time equal
to the cost of waking, is derived from a competitive argument
for the penalty seen by a single process. The final spin-time
component accounts for communication between pairs of pro-
cesses, and conditionally keeps processes scheduled when re-
ceiving messages. Each component, its relationship with vari-
ous system parameters, and its value in our implementation, is
summarized in Figure 2.

In the ideal case, we would also analyze the benefit of
one process spinning for the job as a whole. However, a
sleeping process can have a cascading effect on the scheduling
of multiple processes only indirectly dependent upon this one.
This analysis remains an open problem.4 Implementation
In this section we describe our implementation of implicit
coscheduling for multiple parallel jobs. After describing our
basic environment, we explain why the parallel run-time layer
is the appropriate layer for implementing the two-phase spin-
block algorithm and, why no level in the system may perform
unbounded spinning when waiting on a remotely produced
result.4.1 Background
The measurements in this paper use a cluster of 16 Ultra-
SPARC I workstations running Solaris 2.6 connected with 8-
port Myrinet switches [6]. GLUnix is used to start the processes
across the nodes of the cluster [17].

For our parallel language, we use Split-C [9], a parallel ex-
tension to C with operations for accessingremote memory built
on Active Messages. We use Split-C becausemany of its appli-
cations are communication intensive, and, therefore, sensitive
to scheduling perturbations. In addition, it closely matches
the model assumed in the original simulations. Simple read
and write operations which access remote memory are built
on a request-response model, requiring the requesting process
to wait for the response. With split-phase assignments and
stores, the initiating process does not wait for the response
until a later synchronization statement, sync. Bulk trans-
fer is also provided for each of these communication styles.
Barriers perform synchronization across processes.

Previous implementations of Split-C assumed that parallel
jobs are run either in a dedicated environment or under explicit
coscheduling, and therefore spin while waiting for message re-
sponses to arrive. Consequently, if Split-C users run multiple
applications simultaneously in our cluster with local schedul-
ing, each user sees performance orders of magnitude worse
than in a dedicated environment.

Our communication layer is AM-II [23], which extends
the Active Message paradigm [28] to a general-purpose clus-
ter environment. The Active Message model is essentially a
simplified remote procedure call that can be implemented effi-
ciently on a wide range of hardware. AM-II handles multiple
communicating processes by virtualizing the network; it also
supports client-server applications and system services.

4.2 Appropriate Semantic Layer
The parallel language run-time library is the appropriate layer
to implement the two-phase spin-block algorithm for two rea-
sons. First, the performance of the run-time library and the
layers below it determine the time for communication opera-
tions to complete, which forms the baseline spin time for pro-
cesses to stay coordinated. Second, the run-time layer contains
semantic information about the relationship between requests
and responses within higher-level primitives, such as reads and
barrier. The run-time level knows when an incoming message
satisfies the condition on which the process is waiting and can
also calculate load-imbalance within barriers.

Modifying the Split-C run-time library required chang-
ing only a few operations that wait for replies (i.e., reads,
writes, syncs, andbarriers). To implement two-phase
spin-blocking, the Split-C library begins by polling the AM-II
layer a fixed number of times as designated by SLocal, checking
if the desired condition is satisfied (e.g., the message response
has arrived) and recording the number of incoming requests.
If the condition is satisfied, the spin-block is complete and the
process continues its computation. Otherwise, if a sufficient
number of requests arrive, Split-C continues to spin for in-
tervals of length SPair , until no messages are received in an
interval. At this point, the process calls an AM-II function that
puts the calling process to sleep until a message targeted for
that process arrives. When the process is woken, the Split-C
layer polls the network to handle the new message. If this
message satisfies the condition for which the process is wait-
ing, the routine returns; otherwise, the process spins again,
once more recording message arrivals to enable conditional
pairwise spinning.4.3 Non-Blocking Layers
Successful implicit coscheduling requires that all levels of an
application apply two-phase spin-blocking whenever waiting
for a result generated from a remote process. If different layers
implement different waiting policies, the performance of the
entire application will suffer. Therefore, all the layers from the
user-level application down to the low-level messaging code
must act in unison.

User-level code that spins while waiting for a message to
arrive is easily supported by providing a Split-C function that
performs the necessary spin-block algorithm. Finding these
spin statements in the application is simple because of the
polling model used in existing Split-C implementations: tight
loops containing polls are simply replaced with our interface.

More serious issues arise when the underlying message
layer spin-waits. For example, spinning occurs in the current
AM-II implementation when waiting for flow-control cred-
its or queue space. Before we identified this problem, pro-
grams sending many small messages to random destinations
without waiting for replies exhibited erratic performance, with
some slowdowns five times worse than ideal coscheduling. In-
spection of the AM-II implementation revealed that outgoing
messages sometimes had to spin-wait for the next slot in a
fixed-length queue to become available.

Ideally, the message layer should provide an interface that
immediately returns control to the run-time layer rather than
spin-wait. However, our temporary solution is to make the
Split-C library message-layer-aware, by avoiding those cases
that cause spinning in the message layer. Thus, Split-C tracks
the number of outstanding messages, and, after sending the
number that fit in the underlying queue (16), waits for all mes-

5

www.manaraa.com

 S
lo

w
do

w
n

 Block Immediate Local Spin Pairwise Spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 v
=0

.0
0

 0
.2

5

 0
.5

0

 1
.0

0

 1
.5

0

 2
.0

0

 g=100us

 v
=0

.0
0

 0
.2

5

 0
.5

0

 1
.0

0

 1
.5

0

 2
.0

0

 g=1ms

 v
=0

.0
0

 0
.2

5

 0
.5

0

 1
.0

0

 1
.5

0

 2
.0

0

 g=100ms

Figure 3: Bulk-Synchronous NEWS. Three copies of the
same synthetic benchmark are run on 16 workstations with im-
mediate blocking, two-phase spin-block with the local spin
time, and two-phase spin-block with conditional pairwise
spin. Three synchronization granularities, g, and six load-
imbalances, v, are shown. The slowdown reported is the aver-
age of 5 runs, and is relative to ideal explicit coscheduling.

sages to be acknowledged, using the appropriate two-phase
spin-block time, before sending more. Unfortunately, as we
will see in the measurements in Section 5.3, this slows down
a few applications by artificially limiting the number of out-
standing messages.5 Spin-Time Experimental Results
In this section, we evaluate the benefit of variations of the two-
phase spin-block algorithm on both synthetic and real applica-
tions. To evaluate the algorithms in a controlled environment,
we implemented a range of synthetic benchmarks. The first
synthetic benchmarks are bulk-synchronous and match those
analyzed in the original simulations [11]; however, because
their communication traffic is bursty, these applications are
relatively easy to schedule. To better approximate the worst-
case behavior of applications and to stress the spin-block al-
gorithm, we implemented a new set of continuous synthetic
benchmarks.

Throughout these experiments, we always run exactly three
competing jobs. Our performance metric is the slowdown of
the last job to complete in our workload relative to an idealized,
perfect model of explicit coscheduling (i.e., three times the
dedicated time).5.1 Bene�t of Two-Phase Spin-Block
To verify the initial simulation results, we begin with a syn-
thetic benchmark, bulk-synchronous NEWS, that matches the
model in the simulations precisely: for a computation granu-
larity, g, and load-imbalance, v, each of the sixteen processes
in the parallel job computes for a time uniformly distributed
in the interval (g � v=2; g + v=2), performs a barrier, reads a
single word from each of its four nearest neighbors, and then
performs another barrier. This loop is repeated such that the
program executes for approximately 20 seconds in a dedicated
environment.

The slowdown on this benchmark is shown in Figure 3
for three blocking algorithms: immediate blocking, two-phase
spin-block with local spin, and two-phase spin-block with con-
ditional pairwise spin. Only a few of the computation granu-
larities and load-imbalances we have measured are shown.

On coarse-grain jobs (g = 100 ms), all three blocking
algorithms perform as well as ideal explicit coscheduling. Ad-
ditionally, because processes with less work can relinquish the
processor for use by another process, jobs with large load-
imbalances exhibit a speedup relative to explicit coschedul-
ing [15]. However, on fine-grain jobs (g = 100 �s), blocking
immediately performs approximately 80% worse than ideal
coscheduling; while this is an order of magnitude improve-
ment over strict spin-waiting, it is still not acceptable.4

Using two-phase spin-block with local spinning brings per-
formance within 10% of ideal for all granularities. Incorporat-
ing conditional pairwise spinning does not provide additional
benefit for this application, due to the simplicity of the com-
munication structure: since all communication is contained
between two barriers with no load-imbalance, there is little
incoming communication to conditionally increase spin time.

In the simulations, an adaptive barrier that calculated the
amount of load-imbalance, v, in the job and informed the
processes to spin either SLocal or SLocal + v, was beneficial
for a range of load-imbalances [11]. However, we found that
in practice, the adaptive barrier had no benefit (not shown). We
believe that this is in part due to the cost of calculating load-
imbalance in the adaptive barrier, but primarily to a difference
in potential gain: in the simulations, the difference between
the minimum local spin time and the maximum spin time with
load-imbalance was substantial (400 �s versus 2 ms) , while
in the implementation, the difference is much smaller (443 �s
versus 1 ms).5.2 Bene�t of Conditional Pairwise Spin
The deficiency of the previous benchmark is that its bursty
communication behavior is not representative of more complex
applications; since it is relatively easy to schedule, it does
not illustrate the benefits of pairwise spin time. Therefore,
we now analyze a set of continuous synthetic benchmarks, in
which processes communicate every c time units in the interval(g � v=2; g + v=2); thus messages continuously arrive, even
as processes wait at barriers. This benchmark is especially
difficult to schedule when the interval, g, between barriers is
large because the globally coordinating effect of the barrier is
lost after a time-slice expires (every 20-200 ms in the default
Solaris 2.6 time-sharing class).

Figure 4 shows the performance of continuous all-to-all
reads to random destinations for several values of g, v, and c,
with local and pairwise spinning. With immediate blocking
(not shown), this application exhibits a slowdown four times
worse than ideal. In all cases, spinning for the local amount
improves performance beyond immediate blocking: all slow-
downs are now within two of ideal. When communication
is frequent and the time between barriers is large, spinning
for the pairwise amount improves performance further. When
the interval between messages, c, is greater than the pairwise
interval, 5W = 325 �s, the two spin-block algorithms are
equivalent.

4Our measured performance with immediate blocking is much better than
that seen in the simulations of [11], due to the smaller scheduling cost versus
round-triptime ratio for our implementation(i.e.,W : 2L+4o is 65�s : 55�s
in our implementation versus 200 �s : 20 �s in the simulations).

6

www.manaraa.com

 No Load-Imbalance (v=0)

 S
lo

w
do

w
n

 Local Spin Pairwise Spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 g
=1

00
m

s

 1
0m

s

 1
m

s

 1
00

u
s

 c=10us

 g
=1

00
m

s

 1
0m

s

 1
m

s

 1
00

u
s

 c=50us

 g
=1

00
m

s

 1
0m

s

 1
m

s

 c=250us

 g
=1

00
m

s

 1
0m

s
 c=1000us

 g
=1

00
m

s

 1
0m

s

 c=2000us

 Load-Imbalance (v=1.5)

 S
lo

w
do

w
n

 LocalSpin PairwiseSpin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 g
=1

00
m

s

 1
0m

s

 1
m

s

 1
00

u
s

 c=10us

 g
=1

00
m

s

 1
0m

s

 1
m

s

 1
00

u
s

 c=50us

 g
=1

00
m

s

 1
0m

s

 1
m

s

 c=250us

 g
=1

00
m

s

 1
0m

s

 c=1000us

 g
=1

00
m

s

 1
0m

s

 c=2000us

Figure 4: Continuous All-to-All Random Reads. Three copies of the same application are run on 16 workstations with local
and conditional pairwise two-phase spin-blocking. The time between barriers (g) and the time between reads (c) is varied for two
load-imbalances. Pairwise spinning improves performance when the interval between messages is small (c < TPair = 325 �s).

 S

lo
w

do
w

n

 Local Spin Pairwise Spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 L
o

ca
l

 P
ai

r

 mm

 L
o

ca
l

 P
ai

r

 fft

 L
o

ca
l

 P
ai

r

 radix

 L
o

ca
l

 P
ai

r

 em3d

 L
o

ca
l

 P
ai

r

 fft:small

 L
o

ca
l

 P
ai

r

 radix:small

 L
o

ca
l

 P
ai

r

 em3d:small

Figure 5: Performance on Split-C Applications. Three
copies of each Split-C application are run on 16 workstations.
The first four Split-C applications use bulk messages, while
the last three use small messages. We compare two-phase
spin-block with local versus pairwise spin time.

In addition to reading one word from random destinations,
we have also measured reading bulk messagesof 16 KB. These
measurements (not shown) reveal a small speedup relative to
coscheduling with both local and pairwise spinning, regard-
less of the other parameters in the application (g, v, c). This
speedup occurs because the time required to send or receive a
16 KB packet (approximately 1ms) is significantly larger than
the time to wake on a message-arrival; therefore, processes
should always sleep when waiting.5.3 Experience with Applications
Analyzing synthetic applications exposed some of the strengths
and weaknesses of our implementation in a controlled envi-
ronment. We now evaluate seven Split-C programs: matrix
multiplication, mm, two copies of radix sort, radix [1, 12],
two fast Fourier transforms, fft [1, 10], and two versions of

a model of electro-magnetic waves propagated in three dimen-
sions, em3d [9]. When two versions of an application exist,
one copy has been optimized to communicate with large mes-
sages, while the other uses short messages. These applications
exhibit a variety of communication characteristics. For exam-
ple, in the bulk version of em3d there is 60 �s of computation
between most messages and 900 ms between barriers, while in
em3d:small there exists only 10 �s between messages and
nearly 3 seconds between barriers.

Figure 5 shows the performance of these applications with
local and pairwise spinning. The two applications that per-
form the worst with implicit coscheduling, radix:small
and emd3d:small, both rarely synchronize yet communi-
cate frequently with random destinations. As expected with
this type of communication pattern, pairwise spinning signif-
icantly improves performance relative to local spinning. For
example, with local spinning, em3d:small runs nearly 80%
slower than ideal; with pairwise spinning it improves to within
30% of ideal.

Bothradix:small andem3d:small perform not only
read operations, but also Split-C stores (i.e., one-way re-
quests without replies). Measurements of a synthetic bench-
mark performing continuous stores to random destinations has
confirmed that stores are currently problematic, due to an artifi-
cial scheduling dependency created by the interaction between
Split-C and AM-II. As described in Section 4, to avoid spin-
ning in AM-II, the Split-C run-time layer sends messages in
bursts of no more than sixteen before waiting for all to return.
Thus, store operations which do not require a round-trip re-
sponse when the application runs in a dedicated environment,
must sometimes wait on an acknowledgment when implicitly
coscheduled. As a result, running just a single copy of the
applications with this constraint results in slowdowns of 10%.
Providing an AM-II layer with a non-blocking interface would
solve this performance problem.6 Sensitivity to Scheduling Environment
Now that we have seen that implicit coscheduling succeeds for
a variety of applications in a controlled setting, we investigate
several more realistic environments. In this section, we present
implicit coscheduling measurements for different layouts of

7

www.manaraa.com

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

A A A A A A A A A A

BBBBB

(1)

BBBBB

CCCCCCCCCC

5 6 7 8 9 10 11 12 13 15140 1 2 3 4

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

A A A A A A A

BBBBBBBB

A

D

(2)

DDDDDDDCCCCCCCC

5 6 7 8 9 10 11 12 13 15140 1 2 3 4

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

7 8 9 10 11 12 13 15140 1 2 3 4
A A A A

���
���
���
���

���
���
���
���

BBBBBBBBBB

5 6

(3)

CCCCC C C C C C

A A A A A A

Slowdown
Layout Coarse Medium Fine

1 0.70 0.92 1.01
2 0.76 0.92 1.03
3 0.57 0.78 1.04

Figure 6: Sensitivity to Job Placement. The pictures rep-
resent the layout of three or four jobs (A, B, C, and D)
across 16 workstations. If the jobs were explicitly cosched-
uled, each workload would require three coscheduling rows.
The slowdowns in the table are calculated relative to explicit
coscheduling for three bulk-synchronous workloads: coarse
(g = 1 sec, v = 2) medium (g = 10 ms, v = 1) and fine-
grain (g = 100 �s, v = 0).

jobs across machines, for an increasing number of jobs, and
for competing jobs that communicate at different rates.6.1 Job Placement
Our previous experiments considered only workloads where
each workstation ran the same number jobs; hence, when load-
imbalance existed, it was due only to load-imbalance within the
applications. In this section, we show that implicit coschedul-
ing performs well when the load across machines is unbal-
anced, and that performance may even improve relative to
explicit coscheduling.

Figure 6 shows three of the parallel job layouts that we
have examined as well as the slowdowns we have measured
for a variety of bulk-synchronous NEWS applications. The
chosen layouts are not necessarily ideal for job throughput,
but, instead represent placements that may occur as jobs enter
and leave the system (e.g., the jobs in layout 2 would be more
efficiently placed with job A on workstations 0 through 7 and
job B on workstations 8 through 15, thus requiring only two
coscheduling rows).

Layouts 1 and 2 were constructed to verify that implicit
coscheduling can handle uneven loads across workstations.
As desired for these two layouts, the applications perform as if
they were running on machines evenly loaded with three jobs.
Because the applications run at the rate of the most loaded
workstation, workstations with less jobs are idle with implicit
coscheduling for the same time as an explicit coscheduling
implementation. Thus, medium and fine-grain jobs perform
nearly identically to coscheduling, and the coarse-grain jobs
with load-imbalance achieve a speedup, in agreement with the
results in Figure 3,

Layout 3 was designed to show that implicit coscheduling
automatically adjusts the execution of jobs to fill available time
on each workstation. In this layout, three coscheduling rows
are required for each of the parallel jobs to be scheduled simul-
taneously, yet the load on each machine is at most two. For
jobs with coarse-grain communication dependencies, implicit
coscheduling achieves a significant speedup relative to explicit
coscheduling because processes can run at any time, and not

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 2 3 4 5 6 7

S
lo

w
do

w
n

Jobs

Continuous Random: Default
Continuous Random: Low Priority

Bulk-Synchronous NEWS: Default
Bulk-Synchronous NEWS: Low Priority

Figure 7: Scalability with Jobs. The number of competing
jobs is increased from one to seven, for two synthetic applica-
tions: bulk-synchronous NEWS (g = 100 �s and v = 0) and
continuous random (g = 100 ms, v = 0, and c = 10 �s).
Each is scheduled with both the default Solaris 2.6 time-sharing
scheduler, where time-slices vary between 20 and 200 ms, and
a version where the priority of the job is limited, such that the
time-slice is always 200 ms.

only predefined slots of the scheduling matrix. Obtaining this
benefit with explicit coscheduling is only possible if the appro-
priate alternate job is carefully chosen to run when a machine
is idle.6.2 Job Scalability
To show the scalability of implicit coscheduling with more
competing jobs we continue to evaluate synthetic applications,
so as not to be limited by memory constraints. We examine
both a relatively easy and a relatively difficult synthetic ap-
plication to schedule: a fine-grain bulk-synchronous NEWS
pattern and a continuous random pattern with frequent reads
and infrequent barriers. Figure 7 shows the performance of
implicit coscheduling with conditional pairwise spinning on
both benchmarks as the number of competing jobs is increased
from one to seven.

The default lines for the two benchmarks show the slow-
down with the default Solaris 2.6 time-sharing scheduler. While
bulk-synchronous NEWS scales well to seven jobs, with a rel-
atively stable slowdown of 11% or less, the continuous random
pattern exhibits an ever-increasing slowdown up to 85% with
seven jobs. This poor performance can be attributed to the in-
teraction of time-slice length with job priorities in the Solaris
time-sharing scheduler.

Scheduling in Solaris is realized with a dynamic priority
allocation scheme [18]. A job’s priority is lowered after it
consumes its time-slice and raised when it has not completed
a quantum before a starvation interval expires. The new pri-
orities, the length of the time-slices, and the starvation interval
are specified in a user-tunable dispatch table. In the default
dispatch table, the starvation interval is set to zero, with the
result that the priority of every process is simultaneously raised
once a second, regardless of whether or not the job is actually
starving. Therefore, as the number of jobs is increased, each
job spends more of its execution time at the high priorities.
Since time-slices vary from 20ms at the highest priority down
to 200ms at the lowest priorities, with more jobs in the system,
each is given smaller time-slices.

8

www.manaraa.com

The low priority lines for each benchmark show that the
scalability of implicit coscheduling can be improved if paral-
lel jobs are limited to priority 0, where the time quantum is
200 ms. With a 200 ms time-slice to amortize coscheduling
skew, performance improves to within 45% of ideal for con-
tinuous random reads and 4% for bulk-synchronous NEWS.

The most interesting implication of this performance im-
provement is that implicit coschedulingdoesnot need priorities
to achieve coordination as originally proposed in the previous
simulations [11].5 As a result, the priorities of the underlying
scheduler can be used to enforce fairness across competing
jobs.6.3 Fairness
The workloads we have measured so far in this paper, like
those the previous simulations [11], have consisted of multiple
copies of the same application. In each experiment, we found
that the three jobs in the workload finished at roughly the same
time, and, therefore, used the completion time of the last job
as our only metric.

However, Figure 8 shows that with the default Solaris time-
sharing scheduler, an infrequently communicating job is given
more of the processor than a competing medium and fine-grain
job. While the last job in the workload finishes in the expected
time (i.e., three times its dedicated time), the most coarse-grain
job finishes significantly earlier. Thus, if another coarse-grain
job entered the system after the first exited, the medium and fine
grain jobs would not finish at the desired time. This scheduling
bias occurs because fine-grain jobs are more sensitive to the
scheduling on remote nodes,and frequently sleep when waiting
for communication to complete. If a fine-grain job competes
against similar jobs, it soon re-acquires the processor when
the other jobs sleep; however, the competing coarse-grain job
rarely relinquishes the processor.

While the Solaris time-sharing scheduler is not the ideal
building block if fairness is the primary criteria, we discuss
a preliminary change that improves fairness across jobs. As
described in the previous section, with the starvation interval
in the default dispatch table set to zero, the priority of each job
in the system is raised once a second, regardless of the past
allocation of each job. Therefore, the only mechanism that
guides fairness is that the priority of a process drops after each
executed time-slice; while the priority of a coarse-grain jobs
drops at a faster rate, the priority boost once a second is the
dominant effect.

Providing a fair allocation of the CPU requires boosting
the priority of a process as determined by its past allocation;
that is, since fine-grain jobs are sleeping more frequently, they
should be given a higher priority when runnable. The interval
after which a job is considered starving should balance two
opposing forces: if the starvation interval is too short, the
priorities of all jobs are kept too high; if the interval is too
long, the priorities of jobs are rarely raised. In either case,
there is no priority differentiation between jobs, and coarse-
grain jobs dominate based upon spin-block behavior. In the
ideal situation, the starve interval, S, slightly exceeds the time-
slice,Q, multiplied by the number of jobs, J . Experiments for
a range of S, J , and Q have verified this relationship works
well for a variety of workloads.

5We believe that the performance irregularities seen in the simulations for
fine-grain jobs and the round-robin scheduler occurred due to a defect in the
two-phase spin-block algorithm: when a process woke from a message other
than the desired reply, it slept again immediately; in our implementation, we
found spinning for the cost of the wakeup,W , greatly improved stability.

0

5

10

15

20

25

0 10 20 30 40 50 60

A
cc

um
ul

at
ed

 C
P

U
 T

im
e

(s
ec

on
ds

)

Coarse

Med
ium

Fine

Elapsed Time (seconds)

Fairness with Default Time-sharing Scheduler

Coarse: 1 sec
Medium: 10 ms

Fine: 100 us

Figure 8: Different Granularities with the Default Sched-
uler. Three competing synthetic parallel jobs with different
communication characteristics (synchronization granularities
of 1 sec, 10 ms, and 100 �s), are implicitly coscheduled on 16
workstations. The jobs were configured to require 20 seconds
in a dedicated environment. While the workload finishes in
the expected time (i.e., 60 seconds), the most coarse-grain job
finishes significantly earlier than the other jobs.

To achieve fairness for the entire parallel job, we lever-
age the derived third piece of implicit information available to
each local scheduler. Since each process in a fine-grain com-
municating job can only make forward progress if the other
processes are also making progress, the processes are likely
to have their priorities raised at roughly the same time across
workstations. If the program contains few synchronization de-
pendencies, the local schedulers may not simultaneously raise
the job’s priority, but in this case, no global scheduling coordi-
nation is required for the job.

As each process of the parallel job has its priority raised
and is scheduled, it runs as long as it communicates only with
processes whose priorities have already been raised. Once
the job must wait for a reply (most likely from a low-priority
process), it sleeps; however, when a new request arrives, the
process wakes and is scheduled immediately. Therefore, when
the priority of the final process in this job is raised, the entire
parallel job becomes implicitly coscheduled. Each process
then travels down the priority levels at the same rate, until
reaching priority zero or until another job has its priority raised.
While a skew equal to the timer granularity may pass before the
entire parallel job is scheduled, this time is not wasted by the
system; since the high-priority job relinquishes the processor
when unable to make progress, other runnable lower-priority
processes are usefully scheduled.

To evaluate the level of control this mechanism has for
improving fairness, we have implemented a simple prototype.
Because the granularity of the starvation interval in Solaris 2.6
is in units of seconds,we use a rather long time quantum ofQ=
500ms to be able to setS > J �Q = (3�500ms)� 2 sec. In a
implementation handling general-purpose workloads, the timer
should be set to expire more frequently (e.g., every 100 ms),
so Q could be set lower for interactive workloads.

Figure 9 shows the completion time of each of three jobs
in a workload containing a mix of granularities; each job per-
forms bulk-synchronous NEWS and is configured to require
30 secs in a dedicated environment. As desired, regardless
of the mix of jobs or the behavior of the local scheduler, the
last job in each workload experiences little slowdown. How-

9

www.manaraa.com

Default Prototype
Solaris Scheduler Fair Scheduler
Finish Time (secs) Finish Time (secs)

Jobs Job 1 Job 2 Job 3 Job 1 Job 2 Job 3

C-C-M 80.6 81.2 89.1 79.8 83.4 88.6
C-C-F 80.7 81.2 91.4 82.6 83.4 89.9

C-M-M 68.3 90.7 90.7 76.5 88.9 90.7
C-M-F 68.1 88.8 91.9 73.5 89.9 88.4
C-F-F 68.1 91.5 92.5 77.4 88.9 92.2

M-M-F 87.5 88.1 92.7 90.4 90.6 80.5
M-F-F 82.2 93.6 93.6 89.5 89.4 89.6

Figure 9: Fairness across Competing Jobs. The comple-
tion time of each of three jobs is shown with the he default
Solaris 2.6 time-sharing scheduler, and a prototype sched-
uler. The workload consists of three bulk-synchronous NEWS
programs where the granularity is either 1 sec (coarse-grain,
“C”), 10 ms (medium-grain, “M”), or 100 �s (fine-grain,
“F”). Each job was configured to execute in approximately
30 secs in a dedicated environment. With the modified sched-
uler, the coarse-grain jobs finish later in the workload than
with the default scheduler, as desired.

ever, with the default scheduler, coarse-grain jobs can finish
up to 24 seconds earlier than expected, which is a significant
bias. The table shows that with our modified parameters, jobs
that rarely communicate receive less of the CPU than with
the default scheduler, now finishing no more than 17 seconds
early. However, while our modification has improved the rel-
ative execution rates between coarse and fine-grain jobs, the
medium-grain job now suffers the most.

Our preliminary results indicate that while priorities can
modify the relative execution rates of competing jobs without
hurting the throughput of the system, more work is needed to
bias scheduling decisions fairly. Since time-sharing schedulers
are designed to provide a compromise between interactive re-
sponse time and fairness, it is our opinion, that a different local
scheduler should be used as a building block. In future work,
we will investigate leveraging a proportional-share scheduler
for allocating resources to parallel jobs [4, 29].7 Conclusions
We believe that leveraging implicit information simplifies the
construction of highly-available, scalable services in a dis-
tributed system. Rather than performing communication to
query remote nodes, extra intelligence is added to existing lo-
cal services to infer remote state. This allows cooperating local
services to retain their autonomy, while making local decisions
that lead to a common global goal.

In this paper we have presented an implementation and
empirical evaluation of implicit coscheduling, a method for
dynamically coordinating the scheduling of communicating
processes [11]. We have shown that global coordination can
be achieved for multiple parallel jobs without a global compo-
nent and without additional communication if each indepen-
dent scheduler observes and reacts to naturally-occurring local
information. The implicit information available for scheduling
consists of the round-trip time of request-response messages,
the arrival of incoming messages, and the ability of a process
to make forward progress.

Communicating processes can infer whether or not they
are currently coscheduled from the round-trip time of request-

responses,and subsequently continue running when it is benefi-
cial. By using two-phase spin-blocking, processes stay sched-
uled when responses arrive quickly, and otherwise voluntar-
ily relinquish the processor. The spin-time should be chosen
as a function of several system and communication-layer pa-
rameters, which can be automatically determined with a few
microbenchmarks and simple computations. In this paper, we
have shown that processesshould increase their spin time when
receiving messages.

The measurements of our system of 16 UltraSPARC I work-
stations connectedwith a high-speednetwork have shown mul-
tiple competing parallel jobs can be coscheduled implicitly
with good performance. Our results hold for both synthetic
programs that communicate either continuously or in bulk-
synchronous style, as well as real applications with a mix of
communication characteristics. We have also shown that jobs
can be placed such that the load across workstations is not bal-
anced. Furthermore, performance scales moderately well as
the number of competing jobs increases if longer time-slices
are used for parallel jobs. Finally, implicit coscheduling does
not require the use of priorities in the underlying local sched-
uler; thus priorities can be used to bias fairness.

Implicit coscheduling is easier to implement than explicit
coscheduling [24], while being naturally fault-tolerant to node
failures and inherently scalable. Since implicit coschedul-
ing does not require communicating processes to be identified
statically, it also readily supports client-server applications.
Implicit coscheduling is useful even when competing parallel
jobs are strictly space-shared, if the jobs leverage distributed
services that communicate, such as a high-performance dis-
tributed file system,

Numerous areas for future work remain within implicit
coscheduling. For example, the performance of parallel jobs
with interactive and I/O-bound jobs as well as with client-
server workloads needs to be evaluated. Further, we would
like to analyze more parallel programming models than the
SPMD, global-address space model of Split-C; we have an
initial implementation of MPI with two-phase spin-blocking
and are currently in the process of evaluating its performance.
Finally, allocating a fair-share of resources to competing paral-
lel jobs is an unsolved problem; leveraging proportional-share
schedulers as the local building block instead of priority-based
time-sharing schedulers may resolve this problem.Acknowledgments
We would like to thank Tom Anderson,Remzi Arpaci-Dusseau,
Steve Lumetta, and Girija Narlikar for their many helpful
comments and discussions on this work. This research has
been supported in part by the Defense Advanced Research
Projects Agency (N00600-93-C-2481, F30602-95-C0014), the
National Science Foundation (CDA 9401156), Sun Microsys-
tems, and California MICRO.References
[1] A. Alexandrov, M. Ionescu, K. E. Schauser, and C. Scheiman.

LogGP: IncorporatingLong Messages into the LogP model - One
step closer towards a realistic model for parallel computation. In
7th Annual Symposium on Parallel Algorithms and Architectures
(SPAA’95), July 1995.

[2] T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team.
A Case for NOW (Networks of Workstations). IEEE Micro,
February 1995.

10

www.manaraa.com

[3] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E.
Anderson, and D. A. Patterson. The Interaction of Parallel and
Sequential Workloads on a Network of Workstations. In Proceed-
ings of ACM SIGMETRICS’95/PERFORMANCE’95 Joint Inter-
nationalConference on Measurementand Modeling of Computer
Systems, pages 267–278, May 1995.

[4] A. Arpaci-Dusseau and D. Culler. Extending Proportional-Share
Scheduling to a Network of Workstations. In International Con-
ference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, Nevada, June 1997.

[5] M. J. Atallah, C. L. Black, D. C. Marinescu, H. J. Siegel, and T. L.
Casavant. Models and Algorithms for Co-scheduling Compute-
Intensive Tasks on a Network of Workstations. Journal of Parallel
and Distrbuted Computing, 16:319–327, 1992.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet—A Gigabet-per-
Second Local-Area Network. IEEE Micro, 15(1):29–38, Febru-
ary 1995.

[7] M. Buchanan and A. Chien. Coordinated Thread Scheduling for
Workstation Clusters Under Windows NT. In Proceedings of
USENIX Windows NT Workshop, Aug. 1997.

[8] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos.
Multiprogramming on Multiprocessors. Technical Report 385,
University of Rochester, Computer Science Department, Febru-
ary 1991.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Proceedings of Supercomputing ’93, pages
262–273, 1993.

[10] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken. LogP:
Towards a Realistic Model of Parallel Computation. In Fourth
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pages 262–273, May 1993.

[11] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. In Proceedings of
1996 ACM Sigmetrics InternationalConference on Measurement
and Modeling of Computer Systems, 1996.

[12] A. C. Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin. Fast
Parallel Sorting Under LogP: Experience with the CM-5. IEEE
Transactionson Parallel and Distributed Systems, 7(8):791–805,
August 1996.

[13] K. Efe and M. A. Schaar. Performance of Co-Scheduling on
a Network of Workstations. In Proceedings of the 13th Inter-
national Conference on Distributed Computing Systems, pages
525–531, 1993.

[14] D. G. Feitelson and L. Rudolph. Distributed Hierarchical Control
for Parallel Processing. IEEE Computer, 23(5):65–77,May 1990.

[15] D. G. Feitelson and L. Rudolph. Gang Scheduling Performance
Benefits for Fine-Grained Synchronization. Journal of Parallel
and Distributed Computing, 16(4):306–18, December 1992.

[16] D. G. Feitelson and L. Rudolph. Coscheduling Based on Run-
Time Identification of Activity Working Sets. International Jour-
nal of Parallel Programming, 23(2):136–160, April 1995.

[17] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and
T. E. Anderson. GLUnix: A Global Layer Unix for a Network
of Workstations. In Software Practice and Experience, 1989.

[18] B. Goodheart and J. Cox. The Magic Garden Explained: The
Internals of UNIX System V Release 4. Prentice Hall, 1994.

[19] A. Gupta, A. Tucker,and S. Urushibara. The Impact of Operating
System Scheduling Policies and Synchronization Methodson the
Performance of Parallel Applications. In Proceedingsof the 1991
ACM SIGMETRICS Conference, pages 120–32, May 1991.

[20] A. Karlin, K. Li, M. Manasse, and S. Owicki. Empirical Studies
of Competitive Spinning for a Shared-Memory Multiprocessor.
In Thirteenth ACM Symposium on Operating Systems Principles,
October 1991.

[21] A. Karlin, M. Manasse,L. McGeoch, and S. Owicki. Competitive
Randomized Algorithms for Non-Uniform Problems. In 1st An-
nual ACM Symposium on Discrete Algorithms, pages 301–309,
Jan. 1990.

[22] S. T. Leutenegger and X.-H. Sun. Distributed Computing Feasi-
bility in a Non-Dedicated Homogenous Distributed System. In
Proceedings of Supercomputing ’93, pages 143–152, 1993.

[23] A. M. Mainwaring. Active Message Application Programming
Interface and Communication Subsystem Organization. Master’s
thesis, University of California, Berkeley, 1995.

[24] J. K. Ousterhout. Scheduling Techniques for Concurrent Sys-
tems. In Third International Conference on Distributed Comput-
ing Systems, pages 22–30, May 1982.

[25] P. Sobalvarro. Demand-based Coscheduling of Parallel Jobs on
Multiprogrammed Multiprocessors. PhD thesis, Massachusetts
Institute of Technology, January 1997.

[26] P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien. Dy-
namic Coscheduling on Workstation Clusters. In Proceedings of
the IPPS ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.

[27] P. G. Sobalvarro and W. E. Weihl. Demand-based Coscheduling
of Parallel Jobs on Multiprogrammed Multiprocessors. In Pro-
ceedings of the IPPS ’95 Workshop on Job Scheduling Strategies
for Parallel Processing, pages 63–75, April 1995.

[28] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: a Mechanism for Integrated Communication
and Computation. In Proceedings of the 19th International Sym-
posium on Computer Architecture, Gold Coast, Australia, May
1992.

[29] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In First Symposium
on Operating Systems Design and Implementation (OSDI), pages
1–11. USENIX Association, 1994.

[30] J. Zahorjan and E. D. Lazowska. Spinning Versus Blocking
in Parallel Systems with Uncertainty. In Proceedings of the
IFIP International Seminar on Performance of Distributed and
Parallel Systems, pages 455–472, December 1988.

11

